
F=qvB เมื่อ F = เป็นแรงกระทำต่ออนุภาคไฟฟ้า q ที่เคลื่อนที่ด้วนความเร็ว v ในทิศ ตั้งฉากกัลสนามแม่เหล็ก B
F= มีหน่วยเป็น นิวตัน (N)
B=มีหน่วยเป็น เทสลา (T:Tesla)
q= มีหน่วยเป็น คูลอมบ์ (C)
v= มีหน่วยเป็น เมตรต่อวินาที (m/s)
ค่าของแรง F จะมีค่ามากหรือน้อยขึ้นอยู่กับ
1. ถ้าประจุไฟฟ้าเคลื่อนที่ในทิศขนานกับสนามแม่เหล็ก จะทิศเดียวกันหรือตรงกันข้ามก็ได้ประจุไฟฟ้าไม่ถูกแรงสนามแม่เหล็กกระทำ แรง F มีค่าเป็น 0
2. ถ้าประจุหยุดนิ่ง ประจุไฟฟ้าจะไม่ถูกแรงจากสนามแม่เหล็กกระทำ แรง F มีค่าเป็น 0
3. ถ้าประจุเคลื่อนที่ในสนามแม่เหล็ก โดยมีทิศการเคลื่อนที่ตั้งฉากกับสนามแม่เหล็ก ประจุไฟฟ้าจะถูกแรงจากสนามแม่เหล็กกระทำมีค่ามากที่สุด
Prev: การหาทิศของสนามแม่เหล็กที่เกิดขึ้นในขดลวดโซเลนอยด์ Next: แรงกระทำต่ออนุภาคที่มีประจุไฟฟ้า ซึ่งเคลื่อนที่ในบริเวณที่มีสนามแม่เหล็ก ภาค 2
F= มีหน่วยเป็น นิวตัน (N)
B=มีหน่วยเป็น เทสลา (T:Tesla)
q= มีหน่วยเป็น คูลอมบ์ (C)
v= มีหน่วยเป็น เมตรต่อวินาที (m/s)
ค่าของแรง F จะมีค่ามากหรือน้อยขึ้นอยู่กับ
1. ถ้าประจุไฟฟ้าเคลื่อนที่ในทิศขนานกับสนามแม่เหล็ก จะทิศเดียวกันหรือตรงกันข้ามก็ได้ประจุไฟฟ้าไม่ถูกแรงสนามแม่เหล็กกระทำ แรง F มีค่าเป็น 0
2. ถ้าประจุหยุดนิ่ง ประจุไฟฟ้าจะไม่ถูกแรงจากสนามแม่เหล็กกระทำ แรง F มีค่าเป็น 0
3. ถ้าประจุเคลื่อนที่ในสนามแม่เหล็ก โดยมีทิศการเคลื่อนที่ตั้งฉากกับสนามแม่เหล็ก ประจุไฟฟ้าจะถูกแรงจากสนามแม่เหล็กกระทำมีค่ามากที่สุด
Prev: การหาทิศของสนามแม่เหล็กที่เกิดขึ้นในขดลวดโซเลนอยด์ Next: แรงกระทำต่ออนุภาคที่มีประจุไฟฟ้า ซึ่งเคลื่อนที่ในบริเวณที่มีสนามแม่เหล็ก ภาค 2
สนามไฟฟ้า และสนามแม่เหล็ก
เราอาจเข้าใจสนามแม่เหล็กไฟฟ้าในรูปของสนามไฟฟ้าและสนามแม่เหล็ก อนุภาคที่มีประจุไฟฟ้าจะสร้างสนามไฟฟ้า และทำให้เกิดแรงไฟฟ้าขึ้น แรงนี้ทำให้เกิดไฟฟ้าสถิต และทำให้เกิดการไหลของประจุไฟฟ้า (กระแสไฟฟ้า) ในตัวนำขึ้น ขณะเดียวกัน อนุภาคที่มีประจุไฟฟ้าที่เคลื่อนที่ จะสร้างสนามแม่เหล็ก และทำให้เกิดแรงแม่เหล็กต่อวัตถุที่เป็นแม่เหล็ก
คำว่า "แม่เหล็กไฟฟ้า" มาจากข้อเท็จจริงที่ว่า สนามไฟฟ้าและสนามแม่เหล็กไม่สามารถแยกออกจากกันได้ ถ้ากฏของฟิสิกส์จะเหมือนกันใน ทุก กรอบเฉื่อย การเปลี่ยนแปลงสนามแม่เหล็ก ทำให้เกิดสนามไฟฟ้า (เรียกว่าการเหนี่ยวนำแม่เหล็กไฟฟ้า ปรากฏการณ์นี้เป็นพื้นฐานของเครื่องกำเนิดไฟฟ้าและมอเตอร์ไฟฟ้านั่นเอง) ในทางกลับกัน การเปลี่ยนแปลงสนามไฟฟ้า ก็ทำให้เกิดสนามแม่เหล็ก
เนื่องจาก สนามทั้งสองไม่สามารถแยกจากกันได้ จึงควรรวมให้เป็นอันเดียวกัน เจมส์ เคลิร์ก แมกซ์เวลล์ เป็นผู้รวมสนามไฟฟ้ากับสนามแม่เหล็กเข้าด้วยกันด้วยสมการทางคณิตศาสตร์ เพียงสี่สมการ ที่เรียกว่า สมการของแมกซ์เวลล์ ทำให้เกิดการพัฒนาฟิสิกส์ในช่วงคริสต์ศตวรรษที่ 19เป็นอย่างมาก และนำไปสู่ความเข้าใจในเรื่องต่าง ๆ ตัวอย่างเช่น แสงนั้น อธิบายได้ว่าเป็นการสั่นของสนามแม่เหล็กไฟฟ้าที่แผ่กระจายออกไป หรือเป็นคลื่นแม่เหล็กไฟฟ้านั่นเอง ความถี่ของการสั่นที่แตกต่างกันทำให้เกิดรังสีแม่เหล็กไฟฟ้าที่แตกต่างกัน เช่น คลื่นวิทยุเกิดจากคลื่นแม่เหล็กไฟฟ้าความถี่ต่ำ แสงที่มองเห็นได้เกิดจากคลื่นแม่เหล็กไฟฟ้าความถี่ปานกลาง รังสีแกมมาเกิดจากคลื่นแม่เหล็กไฟฟ้าความถี่สูง
ทฤษฎีแม่เหล็กไฟฟ้ามีส่วนสำคัญที่ทำให้เกิด ทฤษฎีสัมพัทธภาพพิเศษของอัลเบิร์ต ไอน์สไตน์ ในปี ค.ศ. 1905
คำว่า "แม่เหล็กไฟฟ้า" มาจากข้อเท็จจริงที่ว่า สนามไฟฟ้าและสนามแม่เหล็กไม่สามารถแยกออกจากกันได้ ถ้ากฏของฟิสิกส์จะเหมือนกันใน ทุก กรอบเฉื่อย การเปลี่ยนแปลงสนามแม่เหล็ก ทำให้เกิดสนามไฟฟ้า (เรียกว่าการเหนี่ยวนำแม่เหล็กไฟฟ้า ปรากฏการณ์นี้เป็นพื้นฐานของเครื่องกำเนิดไฟฟ้าและมอเตอร์ไฟฟ้านั่นเอง) ในทางกลับกัน การเปลี่ยนแปลงสนามไฟฟ้า ก็ทำให้เกิดสนามแม่เหล็ก
เนื่องจาก สนามทั้งสองไม่สามารถแยกจากกันได้ จึงควรรวมให้เป็นอันเดียวกัน เจมส์ เคลิร์ก แมกซ์เวลล์ เป็นผู้รวมสนามไฟฟ้ากับสนามแม่เหล็กเข้าด้วยกันด้วยสมการทางคณิตศาสตร์ เพียงสี่สมการ ที่เรียกว่า สมการของแมกซ์เวลล์ ทำให้เกิดการพัฒนาฟิสิกส์ในช่วงคริสต์ศตวรรษที่ 19เป็นอย่างมาก และนำไปสู่ความเข้าใจในเรื่องต่าง ๆ ตัวอย่างเช่น แสงนั้น อธิบายได้ว่าเป็นการสั่นของสนามแม่เหล็กไฟฟ้าที่แผ่กระจายออกไป หรือเป็นคลื่นแม่เหล็กไฟฟ้านั่นเอง ความถี่ของการสั่นที่แตกต่างกันทำให้เกิดรังสีแม่เหล็กไฟฟ้าที่แตกต่างกัน เช่น คลื่นวิทยุเกิดจากคลื่นแม่เหล็กไฟฟ้าความถี่ต่ำ แสงที่มองเห็นได้เกิดจากคลื่นแม่เหล็กไฟฟ้าความถี่ปานกลาง รังสีแกมมาเกิดจากคลื่นแม่เหล็กไฟฟ้าความถี่สูง
ทฤษฎีแม่เหล็กไฟฟ้ามีส่วนสำคัญที่ทำให้เกิด ทฤษฎีสัมพัทธภาพพิเศษของอัลเบิร์ต ไอน์สไตน์ ในปี ค.ศ. 1905
ฟลักซ์แม่เหล็ก(Magnetic Flux)
คือ จำนวนเส้นแรงแม่เหล็ก ในบริเวณหนึ่งๆ มีหน่วยเป็นเวเบอร์(Weber, Wb) ในระบบ SI หน่วยของ B เป็น เทสลา(Tesla, T) 1 T=1 Wb/m2 ***บางครั้งใช้หน่วยเป็น เกาส์(Gauss) เมื่อ 1 G = 10-4 T
ความหนาแน่นฟลักซ์แม่เหล็ก และความเข้มสนามแม่เหล็ก


วันนี้(14 สิงหาคม 2552)ใครที่เปิดเว็บไซต์ google ขึ้นมา คงจะเห็นโลโก้ google แปลกตาไปจากทุกวัน เนื่องจากวันนี้เป็นวันคล้ายวันเกิดของ ฮานส์ คริสเตียน เออร์สเตด ผู้ค้นพบกระแสไฟฟ้าที่เกิดจากสนามแม่เหล็ก ว่าแล้ว วันนี้กระปุกนำความรู้เรื่องนี้มาบอกกันค่ะ ฮานส์ คริสเตียน เออร์สเตด (Hans Christian Oersted) เกิดเมื่อวันที่ 14 สิงหาคม พ.ศ.2320 เขาเป็นศาสตราจารย์ภาควิชาฟิสิกส์ ประจำมหาวิทยาโคเปนเฮเกน ประเทศเดนมาร์ก เออร์สเตดค้นพบความสัมพันธ์ระหว่างไฟฟ้าและสนามแม่เหล็กด้วยความบังเอิญ ในเดือนเมษายน ปี พ.ศ. 2363 ขณะบรรยายวิชาฟิสิกส์ในหัวข้อ คุณสมบัติของกระแสไฟฟ้า (Electricity, Galvanism and Magnetism) โดยมีอุปกรณ์ในการทำการทดลองประกอบการบรรยาย คือ แบตเตอรี่ สายไฟ และเข็มทิศ เออร์สเตดได้ทำการทดลองเกี่ยวกับปรากฏการณ์ที่เข็มทิศจะเบนเมื่อมีฝนตกหนักและฟ้าแลบ เพื่อลองดูว่าจะเกิดอะไรขึ้นกับเข็มทิศ ถ้าผ่านกระแสไฟเข้าไปในลวดตัวนำ เขานำลวดตัวนำตั้งฉากกับเข็มทิศและพบว่าไม่มีอะไรเกิดขึ้น แต่หลังจากการบรรยายสิ้นสุด เออร์สเตดลองวางลวดตัวนำขนานกับเข็มทิศ และผ่านกระแสไฟฟ้าไปในลวดตัวนำ กลับพบว่าเข็มทิศกระดิก และเริ่มเบน การค้นพบนี้ทำให้เออร์สเตดเป็นบุคคลแรกที่ค้นพบความสัมพันธ์ระหว่างกระแสไฟฟ้าและแม่เหล็ก หรือนำไปสู่ทฤษฎีความสัมพันธ์ระหว่างแม่เหล็กกับไฟฟ้า (Electro Magnetism Theory) ต่อมาในวันที่ 11 กันยายน ปีเดียวกันนั้นเอง การค้นพบของเออร์สเตดได้ถูกไปนำเสนอที่ราชสมาคมฝรั่งเศส โดย โดมินิก ฟร็องซัวส์ ฌอง อราโก (Dominiqiue Francois Jean Arago) เขาระบุว่าการค้นพบนี้สำคัญไม่น้อยไปกว่าการค้นพบไฟฟ้า นอกจากนี้ยังมีนักวิทยาศาสตร์ชาวฝรั่งเศสและชาวอังกฤษอีกหลายคนที่พยายามแข่งขันเพื่ออธิบายปรากฏการณ์ที่เออร์สเตดค้นพบ โดยเฉพาะนักทดลองชาวฝรั่งเศสที่ชื่อ ฌอง แบพติสท์ บิโอต์ (Jean Baptiste Biot) และ เฟลิกซ์ ซาวาร์ (Felix Savart) เป็นนักฟิสิกส์คนแรกๆ ที่สามารถอธิบายปรากฏการณ์นี้อย่างละเอียดได้ นับได้ว่าการค้นพบของ ฮานส์ คริสเตียน เออร์สเตด ได้จุดประกายที่ทำให้นักวิทยาศาสตร์หลายคนพยายามค้นพบเรื่องแม่เหล็กไฟฟ้า รวมถึง อังเดร มารี แอมแปร์ (Andre Marie Ampere) ผู้ค้นพบทฤษฎีแม่เหล็กโลก ด้วย
ไม่มีความคิดเห็น:
แสดงความคิดเห็น